

Effective from Session: 2018	8-19						
Course Code	ME401	Title of the Course	Industrial Engineering	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	integrated sy business ope professional s adapt and sol	stems that include peo rations and project ma skills necessary to adap ve the increasingly com	nies through effective problem solving. Design, develop, sopple, materials, information, equipment, and environment nagement teams. Continue to develop holistically, includent to our changing societal, technological, and global envir applex problems faced by industry; embrace innovation through the develop holistically as a learner to become leaders	ts · E luding onmer ugh in	ffective the pe its · To tellectu	ly man rsonal be able al diver	age and e to

	Course Outcomes							
CO1	Apply knowledge and understanding of productivity models in various industries. Design and develop the products and processes. Apply basic							
	knowledge of product development and industrial process design.							
CO2	Analyze the facility location and network models. Understanding of supply chain system.							
CO3	Interpretation and analysis of data from aggregate output planning models. Knowledge and understanding of Human Factors Engineering and							
	various job design techniques.							
CO4	Select and analyze an inventory control model. Understanding of manufacturing resources and queuing systems.							
CO5	Analyze and control the quality of an end product. Analysis of industrial systems using linear and non-linear programming approaches.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction : Concept of Industrial Engineering, Functions of Industrial Engineering, Industrial Engineering techniques, Role of an Industrial Engineer. Applications of Industrial Engineering. 4 Production and Productivity : Concept of production, production function, production system, Definition of productivity, Difference between productivity and production, Productivity, efficiency and effectiveness. Measurement of productivity, Types of productivity, productivity index, ways to improve productivity.	8	CO1
2	Job Evaluation and Merit Rating	Job Evaluation and Merit Rating : Concept of job evaluation, job analysis, job description, job simplification, job evaluation methods, Definition and methods of merit rating, wage- incentive payment plans. 4 Plant Layout and Materials Handling: Considerations in plant location, Definition of plant layout, types of layout, Principle of plant layout, Material, handling, Material handling equipments. 2 Production Planning and Control (PPC) Objectives of PPC, Functions of PPC, production planning, steps in PPC, effectiveness of PPC system.	8	CO2
3	Depreciation and Replacement	Depreciation and Replacement : Concept of depreciation and obsolescence, Classifications of depreciation, Methods of charging depreciation, Service life of an asset, Replacement of items which deteriorate with time. 2 Inventory Control : Inventory, function of inventory, inventory costs, Deterministic inventory models. 3 Statistical Quality Control: Introduction, Process control, Control charts, acceptance plan, acceptance sampling, single, Double and sequential Sampling plans, concept of average outgoing quality.	6	CO3
4	Industrial Ownership	Industrial Ownership: Introduction, Sole proprietor enterprise, partnership firm, joint stock company, Classification of company, Comparison of Public, Private and Joint sector, Cooperative organization. 4 Factory Legislation in India : Importance and principles of Labour legislation, Factory Act, Payment of wages Act, Minimum wages Act, Workmen's compensation Act, Employee's State Insurance Act.	8	CO4
5	Break-Even- Analysis	Break-Even-Analysis : Introduction and purpose of BEA, Assumptions, Steps in BEA, Fixed Cost, Variable cost, Margin of safety, Angle of incidence, Profit volume graph. 4 Brief Introduction of the Following Terms: Concept of optimization, Concept of value engineering Total quality management, Management of Projects, Management information systems, Professional and business Ethics, Environmental pollution.	8	CO5
	ce Books:			
	0 0	g: M.I. Khan, New-Age Int. g and Management: O.P. Khanna, Dhanpat Rai		
		nent, An Analysis of Management Fuction: H.Kontz and C.D. Donnel		
4.		gement: J.Moore, Prentice Hall.		
	rning Source:	,		
	8	atch?v=yhywrCChJBQ&list=PLLy_2iUCG87D5n9zraFS2QYajk0OAOlVK		
https:/	//www.youtube.com/wa	atch?v=yYIVumq6sVM&list=PL299B5CC87110A6E7		
https:/	//www.youtube.com/wa	atch?v=r-086V4zcMM&list=PLbjTnj-t5Gkl0z3OHOGK5RB9mvNYvnImW		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	1					3	3	2	3
CO2	3	3	3	2	2	3	1					2	3	3	2
CO3	3	3	2	2	2	3						2	3	2	3
CO4	3	2	2	2	3	3	1					2	3	3	2
CO5	3	1	1	1	1	3						2	3	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018	8-2019						
Course Code	ME402	Title of the Course	CAD & CAM	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	NONE	Co-requisite	NONE				
Course Objectives	 Uno Get Lea 	derstand the fundamenta acquainted with the bas irn working principles o	a computer aided design / manufacturing ils used to create and manipulate geometric models sic CAD software designed for geometric modeling f NC machines CNC control and part programming up Technology, FMS and CIM				

	Course Outcomes								
CO1	Describe basic structure of CAD workstation, Memory types, input/output devices and display devices and computer graphics								
CO2	Acquire the knowledge of geometric modeling and Execute the steps required in CAD software for developing 2D and 3D models and perform transformations								
CO3	Explain fundamental and advanced features of CNC machines								
CO4	Illustrate Group Technology, CAQC and CIM concepts								
CO5	Know about the Concept of Mechatronics and Robotics								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction and Review of Computer Programming	Introduction and Review of Computer Programming : Introduction to CAD/CAE, Elements of CAD, Concepts of integrated CAD/CAM, CAD Engineering applications, its importance and necessity. Review of C, C++. Introduction to MATLAB; Multiplication, addition, subtraction and division. Utility and application. Functions and 2D plots. Computer Graphics-I Computer systems, Graphics input devices-cursor control devices, Digitizers, Scanners, speech oriented devices and touch panels, Graphics display devices CRT, colored CRT monitors, Color models, DVST, Flat-panel display, Graphics output Devices	8	CO1
2	Computer Graphics	Computer Graphics -II Graphics software, Graphics functions, output primitives-Bresenham's line drawing and Mid-point circle algorithms. Geometric Transformations: Word/device co-ordinate representations, 2D and 3D geometric transformations, Matrix representations-translation, scaling, shearing, rotation and reflection, composite transformations, concatenation about arbitrary axis. Exercise and programs	8	CO2
3	Introduction to NC Machines	Introduction to NC Machines: Introduction to Automation, Need and future of NC systems and CAM; Advantages and disadvantages; Classification; Open and closed loop systems; Historical development and future trends. NC Part programming: (a) Manual (word address format) programming; Examples Drilling and Milling. (b) APT programming. Geometry, Motion and Additional statements, Macro-statement	8	CO3
4	Computer Integrated Manufacturing System	Computer Integrated Manufacturing System: Group Technology, Manufacturing cell, Transfer lines, FMS, CIM, CAD/CAM, CAPP, Concept of Mechatronics Interpolators: Principle, Digital Differential Analyzers; Linear interpolator, Circular Interpolator and its software. Control of NC Systems: Open and closed loops. Automatic control of closed loops with encoder and tachometers; Speed variation of DC motor; Adaptive control.	8	CO4
5	Numerical Methods	Numerical Methods : Introduction to curve fitting methods. Root-finding and Optimization techniques. Bisection method, Regula-Falsi Method, Newton Raphson method, Interpolation Lagrange and Newton's interpolation, Curve fitting-Least Square method Numerical integration-Trapezoidal and Simpson Method. Finite Element Methods: Introduction and Application of FEM, Stiffness Matrix/Displacement Matrix, One/Two Dimensional bar and beam element (as spring system) analysis.	8	CO5
	nce Books:		•	•
•	ter Graphics: Hearn and ter Aided Design : R.K.	Baker (Pearson/Prentice hall) Srivestave		
1	e	Srivastava I Practice: Foley, Van Dam, Feiner, (Pearson Education)		

CAD/CAM, Theory and practice: Ibrahim Zeid (McGraw Hill International)

Computer Aided Analysis and Design of Machine Elements: (Rao and Dukkipati)

Mathematical Elements for Computer Graphics: Rogers and Adams (McGraw Hill)

CAD/CAM : Groover and Zimmers (Prentice Hall of India Pvt. Ltd.)

Computer Oriented Numerical Methods: Rajaraman (Prentice Hall)

e-Learning Source:

https://www.youtube.com/watch?v=EgKc9L7cbKc&list=PLC3EE33F27CF14A06

https://www.youtube.com/watch?v=1gDmNDJ9SHc&list=PL1F857AA89C464B15

https://www.youtube.com/watch?v=sp7JwktN9fo

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	1	2	2	1	3	1	1	2	3	3	2	2
CO2	3	3	3	1	2	3	1	1	2	1	2	3	3	2	3
CO3	3	3	3	2	2	3	1	2	2	1	2	3	3	3	2
CO4	2	3	3	2	2	3	3	1	1	2	3	1	3	3	3
CO5	3	3	2	2	3	3	2	1	1	1	3	2	2	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018-19								
Course Code	ME403	Title of the Course	DRILLING TECHNOLOGY FOR WATER, OILS AND MINERAL EXPLORATION	L	Т	Р	С	
Year	IV	Semester	VII	3	1	0	4	
Pre-Requisite	NONE	Co-requisite	NONE					
Course Objectives	 Study of C To know al Geo-chemi 	and History of Drilling, lassification of rocks bout application of Geo- cal prospecting and rem clocation of site.	physics					

	Course Outcomes							
CO1	Isolate the key features of a drilling technology for oil, water, and minerals.							
CO2	Indicate how the properties of drilling fluid affect drilling methods, Develop soil testing method and							
	finding its site							
CO3	Describe the role of drilling fluid in improving the material removal rate, Develop fundamental							
	Knowledge of the drilling fluid & amp; its chemical composition.							
CO4	Identify the method of Geo-chemical prospecting and remote sensing for water.							
CO5	Estimate the different fluid property and develop the understanding of geo-physics							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	History of Drilling	History of Drilling, Geology & classification of rocks, Application of Geo-physics, Hydrology, Geochemical prospecting and remote sensing for water, oil & mineral exploration, soil testing location of site.	8	CO1					
2	Drilling Logging and Testing	Drilling Logging and Testing Reverse and direct rotary, Percussion, DTH, Odex Drilling, Conventional, Wire Line, Auger Drilling and Drilling for Standard Penetration Test (SPT). Borehole Logging ,Drill stem test,	8	CO2					
3	Drilling Fluids	Drilling Fluids Type of Drilling Fluid, Bentonite –constituents, Maintenance of parameters, Viscosity, Sp. Gravity, Filtration loss, Additives to maintain parameters, use of polymers as fluids.	8	CO3					
4	Water Well Drilling Origin	Water Well Drilling Origin, occurrence and movement of ground water, Genetic classification of water, Aquifer, Transmissibilty, Darcy's law, Coefficient of Permeability, Construction of tube well, well development, drilling method, placement Gravel pack,	8	CO4					
5	Drilling for Oil and Minerals Exploration Diamond Drilling	Drilling for Oil and Minerals Exploration Diamond Drilling, Horizontal, vertical and directional Drilling, Core samples, Geotechnical order (GTO), Deviation in borehole and wedge design, , Geothermal Drilling, Oil Drilling Exploration.	8	CO5					
Referen	ce Books:								
1.	Diamond Drilling Tec	hnology by C.P Chug, Oxford publication							
2.	A Handbook of Drillin	ng Technology by C.P Chug, Oxford publication							
e-Lear	rning Source:								
https:/	https://www.voutube.com/watch?v=VE_xMqM-p0k&list=PLSsfsY90RszGPQ11CN4qpV5HvcYvgOqFs								
https:/	//www.youtube.com/wa	atch?v=6E7WEu62DTY							

https://www.youtube.com/watch?v=lhx1nvZFPS4&list=PLrb2lGnLJld_E7C0wVAqU4JGabm2IiT38

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	1	1	2	1	2	3	2					1	1	-	-
CO2	1	2	-	-	1	2	2					2	2	1	1
CO3	1	1	1	3	-	2	1					2	-	1	2
CO4	2	-	3	-	1	1	-					3	1	-	1
CO5	1	2	-	2	1	-	3					1	-	3	-

Effective from Session: 2018												
Course Code	ME404	Title of the Course	Total Quality Management	L	Т	Р	С					
Year	IV	Semester	3	1	0	4						
Pre-Requisite	NONE Co-requisite NONE											
Course Objectives	student 2. The org analysis 3. Underst improve	to function effectively a anizational structure boo , as well as the team lea anding required defining ement possible.	ive of this course is to develop a comprehensive set of skills s Total Quality Managers and introducer of quality concepts by of knowledge includes techniques for both quantitative and dership skills necessary to get projects across the goal line. g the metrics behind the operation in an industry to attain the navior in Quality Management and apply various quality impre-	1d non 2 highe	-quanti	tative of	s.					

	Course Outcomes
CO1	Evaluate the principles of quality management and to explain how these principles can be applied within quality management systems.
CO2	Identify the key aspects of the quality improvement cycle and to select and use appropriate tools and techniques for controlling, improving and measuring quality like 5S or Kaizen
CO3	Critically appraise the organizational, communication and teamwork requirements for effective quality management
CO4	Critically analyze the strategic issues in quality management, including current issues and developments, and to devise and evaluate quality implementation plans
CO5	Develop research skills that will allow them to understand requirements of ISO 9000-2000, Taguchi method, JIT

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Quality Concepts	Quality Concepts : Introduction, Need for Quality, Evolution of quality, Definition of quality, Dimensions of manufacturing and service quality, Basic concepts of TQM, Definition of TQM, Contribution of Deming, Juran and Crosby, Barriers to TQM	8	CO1			
2	Quality Management:	Quality Management : Leadership – Strategic quality planning, Customer satisfaction, Customer complaints, Customer retention, Team and Team work, Continuous process improvement – PDSA cycle, 5S, Kaizen – Supplier partnership – Partnering supplier selection – Supplier rating	8	CO2			
3	Control Charts:	and analysis of control charts, improvement of quality by control chart, variable sample size					
4	Defects Diagnosis and Prevention:	Defects Diagnosis and Prevention : Defect study, identification and analysis of defects, corrective measure, factors affecting reliability, MTTF, calculation of reliability, Building reliability in the product, evaluation of reliability, interpretation of test results, reliability control, maintainability, zero defects, quality circle.	8	CO4			
5	IS0-9000 and its concept of Quality Management:	IS0-9000 and its concept of Quality Management : ISO 9000 series, Taguchi method, JIT in some details	8	CO5			
	nce Books:						
Lt. Gen.	. H.LaI, "Total Quality r	nanagement", Wiley Eastern Limited, 1990					
P.N.Mu	kherjee, "Total Quality	Management", PHI					
Greg Bo	ounds. "Beyond Total Q	uality Management". McGraw Hill, 1994					
Menon,	H.G, "TQM in New Pro	oduct manufacturing", McGraw Hill 1992					
e-Lea	rning Source:						
		atch?v=5pMWmU_8lfI&list=PLPjSqITyvDeUUUwunyiwq41yJZofQEzMI					
https:	//www.youtube.com/wa	atch?v=VxNIYCMr1Nc&list=PLueDbnzoKDZ-ZIJigjav-j8ZWz5CEoz-0					
https:	//www.youtube.com/wa	atch?v=ksR4Xy6tFcM					

						Course	e Artic	ulation	Matrix: (Mapping of	of COs with	h POs and P	SOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	2	2	2	1		2						2	2	2	2
CO1	3	2	2	1		2						3	Z	5	Z
CO2	3	3	3	2		3						3	1	2	2
CO3	3	3	3	2		3						3	3	3	2
CO4	3	2	2	2		3						3	2	2	3
CO5	3	3	2	1		3						3	1	2	1

Name & Sign of Program Coordinator

Effective from Session: 2018	3-19							
Course Code	ME405	Title of the Course	Unconventional Manufacturing Processes	L	Т	Р	С	
Year	IV	Semester	VII	3	1	0	4	
Pre-Requisite	Manufacturing Science-I, Manufacturing Science-II	Co-requisite	NONE					
Course Objectives	 To classify an To analyze m 	 To impart understanding of different types of modern Machines. To classify and analyze various non-conventional machines and their applications. To analyze material removal mechanism in different unconventional machining processes. 						

	Course Outcomes
CO1	The students will understand the principle, working and applications of unconventional machining process, need of unconventional
	manufacturing processes & its classification and its future possibilities.
CO2	The students will know the principle and working and application of unconventional machining processes like Electro-Discharge machining,
	Electrochemical machining
CO3	The students will learn the principle and working and application of unconventional machining processes like Laser beam machining, Electron
	beam machining
CO4	Know the principle and working and application of Unconventional welding processes, Under water welding, Cladding.
CO5	Know the principles, working and applications of High energy forming processes such as Explosive Forming, Electromagnetic forming,
	Electro-Discharge forming, water hammer forming, explosive compaction

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction: Limitations of conventional manufacturing processes need of unconventional manufacturing processes & its classification and its future possibilities.	5	CO1
2	Unconventional Machining Process	Unconventional Machining Process: Principle and working and applications of unconventional machining process Electro- Discharge machining, Electrochemical machining, Abrasive jet machining etc	8	CO2
3	Unconventional Machining Process (continued	Unconventional Machining Process (continued): Principle and working and application of unconventional machining processes, Laser beam machining, Electron beam machining, welding Ultrasonic machining etc.	8	CO3
4	Unconventional welding processes	Unconventional welding processes: Explosive welding, Cladding etc Under water welding, Metalizing, Plasma arc welding/cutting etc	8	CO4
5	Unconventional Forming processes	Unconventional Forming processes: Principle, working and applications of High energy forming processes such as Explosive Forming, Electromagnetic forming, Electro-Discharge forming, water hammer forming, explosive compaction etc. Electronic-device Manufacturing: Brief description of Diffusion and Photo- Lithography process for electronic-device manufacturing.	11	CO5
Referen	ce Books:			

Modern Machining Processes – P.C. Pandey

Unconventional Machining – V.K. Jain

e-Learning Source:

https://www.youtube.com/watch?v=cxU1zUOpGLk&list=PLtpJfjyaifnmCI-JcNxs6uQgv3b2WYKzS

https://www.youtube.com/watch?v=06QxjEAMrKc&list=PLwFw6Nkm8oWqFJUxiUuu5c0uHK076lz2K

https://www.youtube.com/watch?v=oI3RIAvyVxc&list=PLbMVogVj5nJSzoQXmu7dsj9ZKJyZ1P4O8

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2						1	3	3	1	3
CO2	3	3	3	3	2						1	3	3	1	3
CO3	3	3	3	3	2						1	3	3	1	3
CO4	3	3	3	3	2						1	3	3	1	3

CO5	3	3	3	3	2						1	3	3	1	3
				1	- Low (Correla	tion; 2-	Mode	rate Corr	elation; 3	- Substanti	al Correlatio	n		
Г															
			Name	& Sign	of Prog	gram C	oordina	ator				Sign	& Seal of Ho	D	

Effective from Session: 2018	Effective from Session: 2018-19									
Course Code	ME406	Title of the Course	Energy Conservation and Waste Heat Recovery	L	Т	Р	С			
Year	IV	Semester	VII	3	1	0	4			
Pre-Requisite	NONE	ONE Co-requisite NONE								
Course Objectives	 To underst Be able to Understand 	and and analyze the diff perform the analysis of l l the various types of dir	thermodynamics and waste heat recovery systems. erent gas power cycles. heat exchangers of different types by LMTD and NTU meth rect conversion technologies. ergy storage techniques	ods.						

	Course Outcomes
CO1	Explain basic concepts of thermodynamics and importance of waste heat recovery.
CO2	Understanding of thermodynamic cycles and heat exchangers.
CO3	Analysis of heat exchanger
CO4	Concept of direct energy conversion technologies
CO5	Explain the concept of energy storage techniques.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Waste Heat	Introduction to Waste Heat, Importance of Waste Heat Recovery, Review of Thermodynamics – Introduction to First and Second Laws, Entropy, Entropy Generation, First and Second Law efficiency	8	CO1
2	Gas Turbine Cycle	Gas Turbine Cycle, Combined Cycle, Combined Gas Turbine-Steam Turbine Power Plant, Heat Recovery Steam Generators Thermodynamic cycles for low temperature application, Cogenerations, Introduction to Heat Exchangers, Analysis – LMTD and ε-NTU method	8	CO2
3	Analysis of Heat Exchanger	Analysis of Heat Exchanger – continued, Problem solving, Special Heat Exchangers for Waste Heat Recovery, Synthesis of Heat Exchanger Network Heat pipes &Vapor Chambers, Direct conversion technologies – Thermoelectric Generators.	8	CO3
4	Direct conversion technologies Direct conversion technologies – Thermoelectric Generators (contd.), Thermoionic conversion, Thermo-PV,MHD Heat Pump; Heat Recovery from Incinerators, Energy Storage – Introduction		8	CO4
5	Energy Storage Techniques	Energy Storage Techniques – Pumped hydro, Compressed Air, Flywheel, Superconducting Magnetic storage. Energy Storage Techniques – Thermal storage (Sensible & Latent), Battery, Chemical Energy Storage, Fuel cells.	8	CO5
	ce Books:			
Cengel8	& Boles, "Thermodyn	amics: An Engineering Approach", McGraw Hill.		
Ramesh	n K.Sash and DusanP.	Sekulic, "Fundemantals of Heat Exchanger Design" Wiley.com		
e-Lear	rning Source:			
https:/	//www.youtube.com/wa	atch?v=IM1QLY2NP3I&list=PLSGws_74K019s_QRXAm-icFCKCalbggHO		
https:/	//www.youtube.com/wa	atch?v=WTgGO3izbqQ&list=PLIXSx0DYmBXdsrpW2n2pqdenxenqQ3x6v		
https:/	//www.voutube.com/w	atch?v=cc1BZz- 110&list=PLSkUIISSc32xJgmvqOgpNTH-7kbTxZg9r		

						Course	e Articu	lation	Matrix: (Mapping of	of COs wit	h POs and P	SOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3		2	2					3	3	2	2
CO2	3	3	3	3		3	2					3	3	3	2
CO3	3	3	3	2		3	3					3	3	2	3
CO4	3	3	2	2		3	3					3	3	2	3
CO5	3	3	2	2		3	3					3	3	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018	3-19						
Course Code	ME407	Title of the Course	Automobile Engineering	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	Machine Design (ME301), Kinematics of Machine (ME 20	Co-requisite	NONE				
Course Objectives	types of power-driven vehicles and Chassis and suspension system, bra	d to familiarize the s king and transmissio	edge in both practically and theoretical students with the fundamentals of Auto n system, and cooling system. The stud of the various transportation vehicles.	omotiv	e Engi	ne Syst	em,

	Course Outcomes							
CO1	List different types of Engine and their classifications							
CO2	Develop concept and define working of Automobile Engine cooling and lubrication system							
CO3	escribe functioning of Transmission train, conventional and non-conventional drives, Clutches, Gear boxes, Synchromesh device, Propeller							
	shaft, Differential axle, braking system and Suspension systems							
CO4	Describe functioning of steering system, steering geometry wheel alignment and wheel angles for modern Automobile							
CO5	Describe cooling system and Lubrication system							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Power unit and Gear Box	Power unit and Gear Box: Principles of Design of main components. Valve mechanism. Power and Torque characteristics. Rolling, air and gradient Resistance. Tractive effort. Gear Box. Gear ratio determination. Design of Gear box.	8	CO1
2	Transmission System	Transmission System: Requirements. Clutches. Torque converters. Over Drive and free wheel. Universal Joint. Differential Gear Mechanism of Rear Axle. Automatic transmission. Steering and Front Axle. Castor Angle, Wheel chamber and Toe in Toe out etc. Steering geometry. Ackerman Mechanism. Understeer and Oversteer.	8	CO2
3	Braking System	Braking System: General requirements, Road, tyre adhesion. Weight transfer. Braking ratio. Mechanical brakes, Hydraulic brakes. Vaccum and air braks, Thermal aspects Chasis and Suspension System: Loads on the frame. Strength and stiffness. Various suspension systems.	6	CO3
4	Electrical System:	Electrical System: Types of starting motors, generator and regulators, lighting system. Ignition system, Horn, Battery etc. 4 Fuel Supply System: Diesel and Petrol vehicle system such as Fuel Injection Pump, Injector and Fuel Pump, Carburetor etc. MPFI	8	CO4
5	Automobile Air Conditioning	Automobile Air Conditioning: Requirements, Cooling and heating systems Cooling and Lubrication System: Different type of Cooling and lubrication system. Maintenance System: Preventive Maintenance, break down maintenance, and over hauling system.	8	CO5
	nce Books:			
	notive Engineering : Hietne			
2. Autom	obile Engineering : Kripal	Singh		
3. Autom	obile Engineering : Narang			
4. Autom	notive Mechanics : Crouse			
5. Autom	nobile Engineering : Newto	n and Steeds		
e-Lear	rning Source:			
https:/	//www.youtube.com/wa	atch?v=hs7bABMtOMI&list=PLyqSpQzTE6M9G2SNxKfsVEjcM9MlJau4F		
https:/	//www.youtube.com/wa	atch?v=LZ82iANWBL0&list=PLbMVogVj5nJTW50jj9_gvJmdwFWHaqR5J		

						Course	e Articu	lation	Matrix: ((Mapping	of COs wit	h POs and P	SOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	1					3	3	2	3
CO2	3	3	3	2	2	3	1					2	3	3	2
CO3	3	3	2	2	2	3						2	3	2	3
CO4	3	2	2	2	3	3	1					2	3	3	2
CO5	3	1	1	1	1	3						2	3	2	3

Effective from Session: 2018	Effective from Session: 2018-19													
Course Code	ME408	Title of the Course	MECHANICAL SYSTEMS DESIGN	L	Т	Р	С							
Year	IV	Semester	VII	3	1	0	4							
Pre-Requisite	NONE	ONE NONE												
Course Objectives	formulation. 2. To know al 3. To impart l 4. To understa	bout system theories and cnowledge about linear	graph analysis and optimization concepts. nd calculus methods for optimization.	nt eng	ineerin	g, Prob	lem							

	Course Outcomes
CO1	Apply system concept of engineering, engineering activity matrix, solve engineering problems and formulate problems.
CO2	Understand black box approach, state theory approach, concepts of linear graph modeling and mathematical modeling.
CO3	Understand black box approach, state theory approach, concepts of linear graph modeling and mathematical modeling.
CO4	Assess feasibility, plan horizon, financial analysis and to understand the concept of model with one and two decision variables.
CO5	Learn the elements of decision problem, utility value and to apply Baye's theorem.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamental Concepts and Definition s	Fundamental Concepts and Definitions: Apply system concept of engineering, engineering activity matrix, solve engineering problems and formulate problems.	8	CO1
2	Understand black box approach	Understand black box approach, state theory approach, concepts of linear graph modeling and mathematical modeling.	8	CO2
3	Analyze path problems	Analyze path problems, network flow problems and to understand the concept and methods of optimization	8	CO3
4	Assess feasibility	8	CO4	
5	Learn the elements of decision problem	Learn the elements of decision problem, utility value and to Apply Baye's theorem.	8	CO5
Jersey. Design I Optimiz	Engineering: J.R. Dixon ation Techniques: S.S. I			
Enginee	ering Design : Robot Ma	tousck, Blackie and son.		
	rning Source: //www.youtube.com/wa	atch?v=-LiNZYpk870&list=PLm_MSClsnwm_fIdzKR-ARchhAG0KL0iYn		
<u>https:</u>	//www.youtube.com/wa	atch?v=mzWMdZZaHwI&list=PL3D4EECEFAA99D9BE		
https:	//www.youtube.com/wa	atch?v=SHbb9dV-we8&list=PLBE92469895618E50		

						Course	e Articu	ilation	Matrix: (Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3									
CO1	3	2	1	2		2						3	3	1	1									
CO2	2	3	3	2		3						3	2	3	2									
CO3	1	3	3	3		3						3	3	2	1									
CO4	3	2	3	2		3						3	1	2	1									
CO5	2	3	3	3		3						3	3	2	2									

Effective from Session: 2018-19 Course Code ME409 Title of the Course Energy Management L T P C													
Course Code	ME409	Title of the Course	Energy Management	L	Т	Р	С						
Year	IV	Semester	VII	3	1	0	4						
Pre-Requisite	NONE	Co-requisite	NONE										
Course Objectives	 Pre Abi Abi Abi Abi 	pare the students for the lity to identify the energy lity to understand various	s and fundamental aspects of industrial and domestic thermal positions of energy management in energy intensive indust gy management skills and strategies in the energy management us energy conservation methods useful in a particular indust e energy conservation method for the critical area identified. y audit report	ries ent sys ry.		esign.							

	Course Outcomes
CO1	Identify the demand supply gap of energy in Indian scenario Demonstrate basic concepts and importance of non-destructive testing and their
	application and also the understanding of commonly used NDT methods.
CO2	Carry out energy audit of an industry/Organization.
CO3	Draw the energy flow diagram of an industry and identify the energy wasted or a waste stream
CO4	Select appropriate energy conservation method to reduce the wastage of energy.
CO5	Draw the energy flow diagram of an industry and identify the energy wasted or a waste stream and evaluate the techno economic feasibility of
	the energy conservation technique adopted

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Introduction to energy	Introduction to energy, Sources of energy, Forms of energy, Energy reserves, renewable energy sources, Unites of energy and the laws of thermodynamics, Energy consumption and GDP, energy database, Energy demand analysis, Costs of exploration and utilization of depletable resources, energy pricing, National energy plan.	8	CO1							
2	Economic analysis and life cycle costing.										
3	Energy conservation areas	Energy conservation areas, Energy transmission and storage, Plant wide energy optimization Models, Data base for energy management, Energy conservation through controls, Computer aided energy management, Program organization and methodology.	8	CO3							
4	Electrical energy conservation in building	Electrical energy conservation in building lighting, heating, ventilating and air conditioning, Energy efficient motor, power factor improvement in power systems, Energy audit of Combustion process, Boilers, Turbines, compressors, Pumps, Heat exchangers, Condensers, Use of industrial, wastes.	8	CO4							
5	Energy environment interaction	Energy environment interaction, Environmental issues, Global warning, Carbon dioxide emissions, Depletion of ozone layer, Government's regulations, Energy economy interaction.	8	CO5							
	ce Books:										
1. Energ	y Management by Clive	e Beggs, Butterwoth- Heinemann Elsevier Science.									
2. Optim	ising Energy Efficiency	in the Industry, By Rajan, Tata Mc Graw Hill Publishers.									
3. Guide	to energy Management	, By C.L Capehart, Fairmont Press.									
4. Renev	vable Energy Sources an	nd their Environment Impact, by Abbasi & Abbasi, Prentice Hall of India									
5. Environmental Risks and Hazards by Cutter, Prentice Hall of India.											
6. Energ	y and Power Risk Mana	gement: New Developments in Modeling, Pricing and Hedging, buy Alexander Eydeland, John	Wiley & Soi	ns							
7. Energ	7. Energy Management Handbook by, Wayne C. Turner.										
8. Therm	nodynamics, By Kennet	h Wark, Tata Mc Graw Hill Publishers.									

9. Exergy Analysis of Thermal, Chemical and Metallurgical Process, By Jan Szargut, David R. Morris, Frank R. Steward, Hemisphere Pub, Springer Verlag Publisher

e-Learning Source:

https://www.youtube.com/watch?v=WwBquDjDGOA&list=PLImNQubhYtnAmyPNwO-nPU-VQIIXH0xqM

https://www.youtube.com/watch?v=8Aqc44PG4Ws

https://www.youtube.com/watch?v=kWcVVbXPTtk&list=PLQmc-I2-FO2GCp2szVRnoIk3e2E5J7oLl

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО															
CO1	3	3	2	2	2	2	3				1	3	3	2	3
CO2	3	3	3	2	2	3	2				2	2	3	3	2

CO3	3	3	2	2	2	3	2		2	2	3	3	3
CO4	3	2	2	2	3	3	2		1	2	3	3	2
CO5	3	1	1	1	1	3	3		2	2	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018	8-19						
Course Code	ME410	Title of the Course	Mechanical Vibrations	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	NONE	Co-requisite	NONE				
Course Objectives	 systems Understa Develop Ability t 	under the most diverse l and the main features of reduced order models t o obtain linear mathema	al procedures to predict the dynamic response of discrete loading conditions. the dynamics of nonlinear lumped parameters systems. o treat systems with a large number of DOF.beams. tical models of real life engineering systems. d time response of vibratory systems.	or co	ntinuou	s struct	ural

	Course Outcomes
CO1	Apply theoretical and numerical procedures to predict the dynamic response of discrete or continuous structural systems under the most diverse loading conditions.
CO2	Be able to write the differential equation of motion of vibratory systems.
CO3	Be able to make free and forced (harmonic, periodic, non-periodic) vibration analysis of single and multi degree of freedom linear systems.
CO4	Ability to obtain linear mathematical models of real life engineering systems.
CO5	Ability to use Lagrange's equations for linear and nonlinear vibratory systems

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamental Concepts and Definitions	Fundamental Concepts and Definitions: Periodic motion, harmonic motion superposition of simple harmonic motions Fourier analysis, Free vibration, Natural frequency, Equivalent systems, Energy method for determining natural frequency, Torsional vibrations, Damped vibrations, Vibrations of systems with viscous damping, Logarithmic decrement.	8	CO1
2	Forced vibration	Forced vibration, Harmonic excitation with viscous damping steady state vibrations, Forced vibrations with rotating and reciprocating unbalance Support excitation, Vibration isolation, Transmissibility, Vibration measuring instruments, Displacement, velocity and acceleration measuring instruments	8	CO2
3	Introduction, Principal modes	Introduction, Principal modes, Introduction, Principal modes, Double pendulum Torsional system with damping, coupled system, dynamic vibration absorbers Dry friction damper, Dry friction damper.	8	CO3
4	Undamped free and forced vibrations	Undamped free and forced vibrations of multi-degree freedom systems influence number, Reciprocal theorem, Torsional vibration of multi-degree rotor system Vibration of gear system, Principal coordinates	8	CO4
5	Continuous systems- Longitudinal vibrations of bars	Continuous systems- Longitudinal vibrations of bars, Torsional vibrations of circular shafts, Torsional vibrations of circular shafts, Shaft with one disc with and without damping, Shaft with one disc with and without damping, Multi-disc shafts, Secondary critical speed	8	CO5
	nce Books:			
	ical Vibrations – P. Srin	•		
		Groover, Jain Brothers, Roorkee.		
	ical Vibrations – W. T.			
		na Murthy, Narosa Publications		
Mechan	ical Vibrations – Tse, M	forse & Hinkle		
e-Lea	rning Source:			
https://	//www.youtube.com/wa	atch?v=bX_m53Xexvk&list=PLAC668A0566953FB5		
https:/	//www.youtube.com/wa	atch?v=9r630K5HmJc&list=PLSGws_74K01_pG3R7rgtDtrDZBjcTgPdR		
https:/	//www.youtube.com/wa	atch?v=IRfWDBMN4yU&list=PLbRMhDVUMngdM3vvYapHCEPTiEvoATCHS		
https://	//www.youtube.com/wa	atch?v=9t9qZMhnRFE		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	2	2	2	1		2						3	1	2	2
CO2	3	3	3	2		3						3	3	3	2

CO3	2	1	3	3	1			2	2	2	1
CO4	3	1	3	1	2			3	2	2	1
CO5	3	2	2	1	1			2	3	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018	3-19						
Course Code	ME411	Title of the Course	Heating Ventilation and Air Conditioning	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	RAC	Co-requisite	NONE				
Course Objectives	 Air co Centra Buildi 	ow about Human comfo nditioning system and it I air conditioning system ng services and BMS and installation of cent	ts type m Vs unitary air conditioning system				

	Course Outcomes
CO1	Isolate the key features Air conditioning system
CO2	Indicate how the central AC plant works.
CO3	Describe the various aspect of human comfort
CO4	Differentiate between central Ac and Unitary Ac, Develop skill to manage installation site of air conditioning plant.
CO5	Estimate the total cost of any HVAC project Develop fundamental knowledge of the types of ventilation system and heating, cooling system.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Human Comfort	Human Comfort, requirements of comfort, comfort chart applied psychrometrics of air conditioning systems, components of A.C. System, Central and Unitary A.C. Systems, Industrial and human comfort air conditioning, Cogeneration of power and refrigeration	8	CO1
2	Heat transmission in buildings	Heat transmission in buildings, building survey and locations of equipment, considerations for heating and cooling loads, load calculation procedures	8	CO2
3	Air Transmission and distribution systems	Air Transmission and distribution systems, fans, pressure losses in ducts and duct sizing methods, Natural supply and extraction systems of ventilation and their combinations. Selection of Air distributions and extraction systems for ventilation, Air Cleaners and Scrubbers.	8	CO3
4	Fluid distribution System	Fluid distribution System; open loop & close loop, pipe sizing and layout, Hot water and Steam Heating Systems	8	CO4
5	A.C. Controls	A.C. Controls: Elements of basic control system, pneumatic, electric and electronic control, Thermostats and humidistat, Building-up of control system, Summer-Winter Changeover, Dampers, freeze protection, sequencing of operations, Temperature reset based on zone load.	8	CO5
	ce Books:			
		efrigeration & Air Conditioning, McGraw Hills Inc. Intl. Student'sEdition.		
2. F.C. (Quiston & Jerald J. Park	er; HVAC Analysis & Design, John Wiley & Sons		
3. HVA	C Systems & Equipmen	t, 1992, ASHRAE Handbook.		
4. HVA	CFundamentals, 1993,A	SHRAE Handbook.		
5. Carrie	er's Handbook of A.C. S	ystem, Design, Carrier D/c Co		
6. C.P. A	Arora; Refrigeration and	Air Conditioning, Tata McGraw Hill, New Delhi		
e-Lear	rning Source:			
		atch?v=xMkgzVR1Luo		
https:/	//www.youtube.com/wa	atch?v=EK8l2zZ55wI		
https:/	//www.youtube.com/wa	atch?v=nlsNmhiID74&list=PLfUUbFVTz-XcXbSUD0BXdPxGXFGkcdLXa		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	2	2	3					2	1	-	-
CO2	2	2	-	-	2	2	1					3	3	1	1
CO3	1	1	1	3	-	1	2					1	-	3	1
CO4	2	-	3	-	1	-	1					2	1	-	1
CO5	1	1	-	2	1	3	-					-	-	3	-

Effective from Session: 2018-19										
Course Code	ME413	Title of the Course	L	Т	Р	С				
Year	IV	Semester	VII	3	1	0	4			
Pre-Requisite	NONE	ONE Co-requisite NONE								
Course Objectives	 Introductio Introductio Introductio 	of NDT in quality assur n to Magnetic Particle T n to penetrant testing n to radiographic testing n to ultrasonic testing	Sesting							

	Course Outcomes
CO1	Demonstrate basic concepts and importance of non-destructive testing and their application and also the understanding of commonly used
	NDT methods.
CO2	Understanding of Magnetism and Magnetizing devices and their properties its use in different magnetization techniques
CO3	Knowledge of aim and application areas of penetrant testing, test methods, types of penetrants and their properties
CO4	Understanding of properties of X and gamma rays and their generation and Radiographic exposure technique
CO5	Good knowledge of principles of wave propagation and working principle of ultrasonic testing techniques

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Scope and advantages of N.D.T	Scope and advantages of N.D.T. some common NDT methods used since ages-visual inspection, Ringing test, and chalk-test (oil-whiting test) their effectiveness in detecting surface cracks Modern NDT methods. Dye-penetrant test-principle, scope, equipment and techniques. Zyglo testing.	8	C01			
2	Magnetic Particle Inspection	Magnetic Particle Inspection. Scope of test, Principle equipment and technique. DC and AC magnetization, use of dry and wet powders testing. Interpretation of results	8	CO2			
3	X-ray radiography	against radiation hazards, Advantage over x-ray radiography methods.					
4	Introduction Principle of Operation- piezoelectricity and ultrasonic probes	ctionIntroduction Principle of Operation-piezoelectricity and ultrasonic probes, Cathode ray oscilloscope techniques, Advantages and limitations. Application of NDT method in the inspection of castings, forging and welded structures with illustrative examples.icity and					
5	Eddy Current Testing-	Eddy Current Testing- Introduction, Principle, Current Flow Characteristics, Eddy Current Instruments and Probes, Inspection of Tube, Crack Inspection	8	CO5			
Referen	nce Books:						
1. P. Hali	mshaw; Non-Destructive	Testing					
2. Metal	s Handbook Vol. II, Non-c	lestructive inspection and quality control.					
e-Lea	rning Source:						
<u>https:</u>	//www.youtube.com/wa	atch?v=5cNWF61Tmj0&list=PLyAZSyX8Qy5AePdV6vbGP4OJQOpbga-0Q					
https://www.youtube.com/watch?v=uAI_APW3wHE&list=PL0gamkFKdFetno5660_dKeWdL9zjFVth8							

https://www.youtube.com/watch?v=DK1dItnI8mM

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	2	2	2	2	1					3	3	2	3
CO2	3	3	3	2	2	3	1					2	3	3	2
CO3	3	3	2	2	2	3						2	3	2	3
CO4	3	2	2	2	3	3	1					2	3	3	2
CO5	3	1	1	1	1	3						2	3	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018	Effective from Session: 2018-19										
Course Code	ME414	414Title of the CourseFuel and CombustionLT									
Year	IV	Semester	VII	3	1	0	4				
Pre-Requisite	NONE	ONE Co-requisite NONE									
	 To give the knowledge about different types of conventional and nonconventional fuels, their origins and properties. To give them the basic understanding of combustion thermodynamics. 										
Course Objectives	3. To equip st	udents with the knowle	dge of chemical kinetics.								
	4. To give the	em an understanding of	premixed and diffusion flames								
	5. To give them the knowledge about sources of pollutants produced during combustion, and its controlling methods										

	Course Outcomes							
CO1	To give the knowledge about different types of conventional and nonconventional fuels, their origins and properties.							
CO2	To give them the basic understanding of combustion thermodynamics.							
CO3	To equip students with the knowledge of chemical kinetics.							
CO4	To give them an understanding of premixed and diffusion flames							
CO5	To give them the knowledge about sources of pollutants produced during combustion, and its controlling methods.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fuels	Fuels: Types of fuels, structure of petroleum fuels, refining process, products of refining process, required properties of an ideal gasoline. Diesel fuels and its properties; flash point, fire point, cloud point, viscosity.	8	CO1
2	Ratings of fuels & Alternative fuels	 Ratings of fuels: Rating of gasoline, Rating of diesel fuel; cetane no.,diesel index, API gravity and specific gravity. Alernative fuels: Petroleum fuels and non petroleum fuels; Benzol, alchohal, ammonia, biodiesel, biogas. Fuels for gas turbine and jet engines. 	8	CO2
3	Fundamentals of Combustion	Fundamentals of Combustion : Conservation of mass to reacting system to determine balanced reaction equation, Stoichiometry of reactions; Enthalpies of formation reaction and combustion; Adiabatic flame temperature. Types of combustion : premixed burning, diffusion burning.	8	CO3
4	Flames & Chemical Kinetics	Flames: Laminar premixed flames; Burning velocity; Effect of Stoichiometry, pressure and temperature on burning velocity. Chemical Kinetics : Elementary Reactions, Reaction order and molecularity; Arrhenius law; Relation between rate coefficient and equilibrium constant; Chain reactions, Nitrogen oxides kinetics.	8	CO4
5	Pollutants from combustion	Pollutants from combustion : Pollutants from gasoline engine; evaporative loss, cranckcase blowby, tailpipe exhaust emission. gasoline engine emission control; fuel modification, engine design, treatment of exhaust gas. Diesel engine emission; constituents of diesel engine exhaust, types of diesel smokes; mechanism of smoke formation, and its control, diesel odour and its control.	8	CO5
	nce Books:			
1.IC eng	gine by M.L Mathur & F	R.P Sharma; Dhanpat Rai Publication.		
2. IC en	igine by V. Ganesan; Mc	Graw Hill.		
3. Yunu	s Cengel; Engineering T	Thermodynamics; Tata Mc-graw Hill		
4. Easto	p and McConkey; Appli	ed Thermodynamics; Pearson Education Asia.		
5. An In	troduction to Combustic	on: Concepts and Applications by Stephen R. Turns, McGraw Hill		
e-Lea	rning Source:			
		atch?v=Fyq4Q5yWDDU&list=PLyqSpQzTE6M927gXIZdVbbsyj9cmxam-b		
1.44	//	otah 9 ma 57 a 7 C W w TO 9 di at DI OLI fa V WI La DI V SS a Gui In Da E Had Olik Ehmo		

 $\underline{https://www.voutube.com/watch?v=s57q7CiWrT8\&list=PLQkLfoKWUaBkXSSe0vIxPeEHzd9khFbmQ}$

https://www.youtube.com/watch?v=svXe-svCEho&list=PLLf6O8XdGj00RTPIi8Gn0zXuaaZvcUDj4

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	2	2	2	2	1					3	3	2	3
CO2	3	3	3	2	2	3	1					2	3	3	2
CO3	3	3	2	2	2	3						2	3	2	3
CO4	3	2	2	2	3	3	1					2	3	3	2

CO5	3	1	1	1	1	3						2	3	2	3
				1.	· Low C	Correla	tion; 2-	Moder	ate Corr	elation; 3	- Substanti	al Correlation	n		
	Name & Sign of Program Coordinator										Sign	& Seal of Ho	D		

Effective from Session: 2018	8-19		Effective from Session: 2018-19										
Course Code	ME421	Title of the Course	CAD & CAM LAB	L	Т	Р	С						
Year	IV	Semester	VII	0	0	2	1						
Pre-Requisite	ME421	Co-requisite											
Course Objectives	DemonTo intro	strate different meth duce the fundament	on Computer Aided Design methods and procedu nods for geometric modeling in CAD. tals of solid modeling. of CNC machine structures and part programmin										

	Course Outcomes
CO1	To demonstrate the application of Knuckle joint and DDA alogarithm using C++
CO2	To demonstrate the application C++ programing
CO3	To demonstrate the application of assembly drawing using design softwares and CNC programing
CO4	To demonstrate the working of CNC milling and lathe machine
CO5	To demonstrate the application C++ programming for Optimisation

Exper iment No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO						
1	Auto CAD	To draw the Knuckle joint using Auto CAD.	2	CO1						
2	DDA algorithm	Write a program in C ++ for a line using DDA algorithm.	2	CO1						
3	C++ Programming	Write a program in C ++ for drawing of circle of given radius.	2	CO2						
4	C++ Programming 2D translation	2	CO2							
5	Solid works	2	CO3							
6	Introduction of NC & CNC machines, Turning operations	2	CO3							
7	NC part program for a drilling & Milling	Write a NC part program for a drilling operation for a given problem. Write N C part program for a milling operation for a given problem.	2	CO4						
8	Ontimize a given									
e-Lear	e-Learning Source:									
https://d	https://drive.google.com/drive/folders/1YDPwwHV8tBH9MAA3tOH33EEd2vtgpDnw?usp=share_link_									

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO CO1	3	3	2	3	2	3			3	2		2	2	2	2
CO2	3	3	2	3	2	3			3	2		5	5	2	2
02	5	5	2	5	2	5			3	2		3	3	2	2
CO3	3	3	2	3	2	3			3	2		3	3	2	2
CO4	3	3	2	3	2	3			3	2		3	3	2	2
CO5	3	2	2	2	2	3			2	2		3	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-19										
Course Code	ME422	Title of the Course	IC Engine and Automobile Engineering Lab	L	Т	Р	С			
Year	IV	Semester	VII	0	0	2	1			
Pre-Requisite	NA									
Course Objectives	types of pow Chassis and s	The purpose of this course is to impart adequate knowledge in both practically and theoretically, covering the various types of power-driven vehicles and to familiarize the students with the fundamentals of Automotive Engine System, Chassis and suspension system, braking and transmission system, and cooling system. The students are acquainted with the operation, maintenance and repairs of all components of the various transportation vehicles.								

	Course Outcomes							
CO1	List different types of Engine and their classifications.							
CO2	Develop concept and define working of Automobile Engine cooling and lubrication system.							
CO3	Describe functioning of Transmission train, conventional and non-conventional drives, Clutches, Gear boxes, Synchromesh device, Propeller shaft, Differential axle, braking system and Suspension systems.							
CO4	Describe functioning of steering system, steering geometry wheel alignment and wheel angles for modern Automobile.							
CO5	Describe starting system and electrical system							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Technical features of common scooters	Comparative study and technical features of common scooters and motorcycles available in India.	2	CO1					
2	Technical features of common small cars	Comparative study and features of common small cars	2	CO1					
3	Braking System	Study the working mechanism of braking system.	2	CO2					
4	Steering System	Study the working mechanism of steering system.	2	CO2					
5	Transmission System	Study the working mechanism of transmission system	2	CO3					
6	Suspension System	Study the working mechanism of suspension system.	2	CO3					
7	Lubrication and cooling system	Study the working mechanism of lubrication and cooling system.	2	CO4					
8	MPFI system.	Study the working mechanism of MPFI system.	2	CO5					
e-Lear	e-Learning Source:								

https://www.youtube.com/watch?v=C__h8fLQbOE

		Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4
CO1	3	3	2	3	2	3			3	2		3	3	2	2
CO2	3	3	2	3	2	3			3	2		3	3	2	2
CO3	3	3	2	3	2	3			3	2		3	3	2	2
CO4	3	3	2	3	2	3			3	2		3	3	2	2
CO5	3	2	2	2	2	3			2	2		3	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD